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Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically
bounded particle
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We study the effect of a disordered or fractal environment in the irreversible dynamics of a harmonic
oscillator. Starting from a generalized Langevin equation and using Laplace analysis, we derive exact expres-
sions for the mean values, variances, and velocity autocorrelation function of the particle in terms of general-
ized Mittag-Leffler functions. The long-time behaviors of these quantities are obtained and the presence of a

whip-back effect is analyzed.
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The study of stochastic phenomena in disordered systems
has been the subject of numerous investigations in the last
years [1-4]. In simple systems, one assumes that the time
correlation function for the system-environment interactions
could be described by an exponential decay with a constant
characteristic ~ time. Nevertheless, complex out-of-
equilibrium dynamics is characterized by a slow relaxation
extended by several orders of magnitude and with the pres-
ence of power-law decay in the range of intermediate times.
Some examples of these phenomena are the dynamics in
polymers [5], charge transport in amorphous semiconductors
[6], decorrelation processes in microemulsions [7], and dif-
fusion in fractals [8].

It is now well established that power-law correlations are
the physical origin of the so-called anomalous diffusion
[2,4]. Dissipation in disordered media have mostly been dis-
cussed in a classical framework and for a free particle. In this
case, the stochastic process is said to exhibit anomalous dif-
fusion when the variance of its displacement after time ¢ has
the asymptotic form #*. The process is called subdiffusive
when A<<1 and superdiffusive when A>1; the case A=1
corresponds to normal diffusion. Nevertheless, in several
fields of physics, one encounters harmonic motion perturbed
by some stochastic interaction with a macroscopic object.
This situation typically corresponds to the residual coupling
between one or various normal modes of a quantum fluid or
many body system to the remaining, i.e., unresolved, micro-
scopic degrees of freedom. In this paper, we analyze the
effects associated with the disordered nature of an environ-
ment through the study of the dissipative dynamics of a har-
monic oscillator immersed in a disordered environment.

For this purpose, we consider the dynamics of a particle
under the influence of a random force modeled as Gaussian
colored noise and an external field f(X)=w’X. In this situa-
tion, the generalized Langevin equation (GLE) for the diffus-
ing particle is written as follows:
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X(t)+fdt’y(t—t’))'((t’)+w2X=F(t), (1)
0

where () is the dissipative memory kernel and F(r) is a
zero-centered and stationary Gaussian random force with
correlation function

(FOF(@)=C(lt-1") = C(7). ()

In the case of internal noise, the memory kernel y(f) is re-
lated to the correlation function of the noise via the second
fluctuation-dissipation theorem [9]

C(1) = kpT (1), 3)

where T is the absolute temperature, and kg is the Boltzmann
constant. In this case, the noise and dissipation stem from the
same source and the system will finally reach the equilibrium
state.

On the other hand, in the case of external noise, the fluc-
tuation and dissipation come from different sources, and the
memory kernel and the correlation function of the noise are
independent. Thus, we cannot use the fluctuation-dissipation
theorem. In this situation, the system will not reach the equi-
librium state [10].

In what follows, we consider the Langevin equation (1)
with the deterministic initial conditions

xo=X(0), vo=X(0). (4)

By means of the Laplace transformation, one can easily
obtain a formal expression for the displacement X(¢) and the

velocity X(¢). The displacement X() satisfies that

X(1) =(X(1)) + jtdt'G(t—t’)F(t'), (5)
0
where
(X(0) = 0oG (1) +xo[ 1 = & 1(1)]. (6)

The relaxation function G(z) is the Laplace inversion of
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where 9(s) is the Laplace transform of the damping kernel
and

t
1(1) = J dr'G(t"). (8)

0

On the other hand, the velocity X(r) satisfies that

t
X(t)=(X(0)) + f d'g(t—1")F(t'), )

0

where

(X(1) = vog (1) - 050G (1), (10)
and the relaxation function g(z) is the derivative of G(1), i.e.,
g()=G'(1). (11)

As in the free particle case [11], one can demonstrate that
the relaxation function g(z) is related with the long-time be-

havior of the normalized velocity autocorrelation function
(VACF) C,(z) as [12]

Cy() = tim ZOXEED) oy, (12)
S XX @)

On the other hand, from Egs. (6) and (10) and taking into
account the symmetry property of the correlation function
and Eq. (3), one can obtain the explicit expressions of the
variances

Bo (1) =21(1) - GX(1) — 0™ I(1), (13)

Bo,,(1) =1 - g(t) - 0*G*(1), (14)

ﬁo-xv(t) = G(t){l - g(t) -

where B=1/kgT.

It is well known that if the correlation function (2) is a
Dirac delta function, the stochastic process is Markovian and
its dynamics can be straightforwardly obtained [13]. How-
ever, if one considers a disordered or fractal environment,
one must take into account that the process is non-Markovian
due to the long-time correlation function behavior. The lack
of characteristic length leads to a lack of characteristic time
[7,14,15]. On the other hand, as a consequence of the physi-
cal limits of the fractal media, one must introduce character-
istic lower and upper frequencies. Therefore, in this situa-
tion, one must consider a process with long-time tail noise
characterized by a correlation function of the fluctuating
force exhibiting a power-law time decay [2,16]

C(t) = Co(Nr ™. (16)

The exponent \ can be taken as 0 <A <1 or 1<A<2,
which is determined by the dynamical mechanism of the
physical process considered. The proportionality coefficient
Cy(N\) is independent of time, but dependent on the exponent
A

o’1(1)}, (15)
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Using the fluctuation-dissipation theorem (3), the memory
kernel y(¢) can be written as

y(1) = ™, (17)
where y5(N)=BCy(\). Then, its Laplace transform reads
Ms) =y, (18)

with ¥, =9,(AM)I'(1=X\) being positive for 0 <\ <1 and nega-
tive for 1 <A <2.
The kernel integral I(z) is the Laplace inversion of

-1
=W s , (19)

s S+ ps+ o’

which can be obtained using the recipes given in Ref. [17].
In this case, we get

©

(=t ;
10 =2 — = PEVES, o= (@), (20)
k=0 :

where E, 4(y) is the generalized Mittag-Leffler function [18]
defined by the series expansion

Ef0)=2 =~ a>0, >0. (21)
’ iz [(aj+p)
EW B(y) is the derivative of the Mittag-Leffler function
- (G+k)y
EQ5(y) = —E —— (22
apy) = apy) = E 2 T+l +B)’ (22)
and w,*=| 5.

The kernels G(r) and g(7) can be calculated using the
relation [17]

d
—dt(t“’”ﬁ‘lE%(— y1) = 1% F2EY, (- ) (23)
to give

G(t)=2% PHED Hou(= (@)™ (24)
k=0

and

g(t) = E ( k‘) (wt)ZkE(zk_))\,H)\k(_ (w)\t)z_)\)- (25)
k=0 .

It is worth mentioning that expressions (20), (24), and
(25) fully determine the temporal evolution of the mean val-
ues (6) and (10), variances (13)—(15), and velocity autocor-
relation function (12).

On the other hand, taking the limit w—0 in Egs. (20),
(24), and (25), we reobtain the solutions for the free particle,
previously obtained in Refs. [19-21]. In this case, we get

1(t) = PE;_, 5(= (0,1)*™), (26)

G(t) =tE,_) »(- (0 )™, (27)
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g(0) = Ey (= (o)), (28)
where E,(y) denotes the Mittag-Leffler function [18] defined
through the series

s Y

E(y)=E,,(y)= S T(aj+1)

a>0. (29)

Let us analyze the asymptotic behavior of the kernels /(z),
G(1), and g(¢). Introducing the long-time limit of the gener-
alized Mittag-Leffler function [17]

Eopy) ~DT(B-a)]! (30)

in (20), using (22) and after some computations, one gets
that for w\¢>1 the asymptotic behavior for /() reads

2
1) ~ - {Ek( (ﬂ) (W)*)q}. (31)
W\

Then, from (8) and (11) we get

1 d w \?
G(t) = ol di Ex( (_) (‘U)\t))\), (32)
(N
and
1 & w \?
g(n) =~ - EEE}\(_ (w_x) (th)“)- (33)

Moreover, using the asymptotic behavior at large y of the
Mittag-Leffler function [22]

E(y) ~ DI -a]! (34)

in Egs. (31)—(33), the asymptotic behavior of the kernels I(z),

G(t), and g(1) (i.e., ®= w,) can be written as

1 o sinAm) T\
I ~ — — s 35
e (33)

> sinAm) T\ + 1)

GO ~= 7 1 (36)
M sin(A) T(\ +2)

t 7
g(t) = I a— pYsaa (37)

where we use the fact that [17]

T
TOOT(1 =\) = — . N#£0,1,2. (38)

sin(\ )

Substitution of the asymptotic expansions (35)—(37) into
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Egs. (6) and (10) allows us to obtain the long-time behavior
of the mean displacement (X(z)) and the mean velocity

(X(1)), which can be written as
2\
X)) = o, i sin(\ ) {XOF(Z\) . vg F();: 1)} (39)

w aw

t w

(X)) = -

X0

sm()wr){ TO+1) vy T+ z)}
- .

pu + ol 2
(40)

On the other hand, substitution of these asymptotic expan-
sions into Egs. (13)—(15) give the long-time behavior of the
variances of the process. Hence,

B~ L @, sin?(\ ) T(M)2 @)
- 0)2 w6 772 tz}\ ’

@, N sin?(Nm) T\ + 1)?

Boyy(1) = 1 - w0 2 20+ (42)
2(2 NP
Am) T(MIT(N+1)
o ()~ D ETINEED )

t

The variances decay as a power law in contrast with the
exponential equilibrium rate in normal diffusive regime.
Moreover, as opposed to the free particle diffusion, the vari-
ance of the displacement approaches its equilibrium value
due to the confining potential.

Finally, taking into account (12) and (37), the long-time
behavior of the velocity autocorrelation function behaves as

2\
) ~ - w;4 sin(\7) F():\:-ZZ) . (44)

T t

From Eq. (44), one realizes that the velocity autocorrela-
tion function decays with a positive power-law tail for 1
<\ <2. This fact implies that the particle is more likely to
move always in the same direction. However, when 0 <A
<1, the C,(#) function decays with a long negative tail. This
negative correlation was called the whip-back effect
[2,23,24] in the frame of the free particle situation. This be-
havior implies that if the particle moves in the positive di-
rection at this instant, it is more likely to move in the nega-
tive direction in the next instant. This effect is responsible for
the slower diffusion of the particle (subdiffusion).
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